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Abstract—Nowadays, the finite-difference time-domain (FDTD)
is accepted as a reliable tool in numerical electromagnetics. In the
field of wave propagation in plasmas, the mainstream in theory and
applications is oriented to frequency domain asymptotic methods,
where the determination of the plasma response presents less dif-
ficulty. However, in many cases of interest (like, e.g., mode conver-
sion) this approach breaks down, the solution becomes question-
able and therefore a full-wave analysis is necessary. In this work,
we present a (novel) scattered-field FDTD algorithm for fully ki-
netic, anisotropic plasma. As an application, we study the perpen-
dicular electron-cyclotron propagation and absorption in simpli-
fied tokamak geometry, under different physics models for the di-
electric response of the plasma. In general, since FDTD is a time do-
main technique, conversion from the frequency domain is needed
in order to be able to exploit the existing knowhow on the dielectric
response. However, in the case of a constant-frequency wave prop-
agating in a stationary plasma, the FDTD method can be applied
directly using the frequency domain dielectric tensor.

Index Terms—Anisotropic plasma, electron-cyclotron (EC)
heating, finite-difference time-domain (FDTD), hot plasma dis-
persion, scattered-field.

I. INTRODUCTION

T HE injection of electron-cyclotron (EC) waves is a stan-
dard method for coupling energy to plasma electrons in

modern fusion devices (tokamaks, stellarators), with primary
applications the plasma heating (ECRH) and the noninductive
current drive (ECCD) (see [1] and references therein). In fusion
experiments, the EC waves are launched in the plasma in the
form of spatially narrow beams, and interact with the electrons
when the EC resonance condition is fulfilled

(1)

where is the wave frequency, is the cyclotron
frequency ( is the magnetic field), are the wavenumber
and the electron velocity components parallel to the magnetic
field, and the Lorentz factor. Since the cyclotron frequency is
proportional to the magnetic field, which is nonuniform in fu-
sion devices, this condition is satisfied in a narrow spatial region
called “resonance layer.”
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The propagation of EC waves in the plasma is described by
Maxwell’s equations. In general, to obtain a full solution to the
problem is burdensome because these equations are partial dif-
ferential (PDE). In numerical applications, a PDE is equiva-
lent to a spatial grid progressing on a time grid, which for the
wave and plasma parameters occurring in fusion may be very re-
source-demanding, in some cases prohibitively. When the wave-
length is small compared to the scale length of inhomogeneity
of the plasma, a simplification is reached by frequency-domain
asymptotic methods: ray tracing [2], quasi-optics [3] or beam
tracing [4]. The solution is obtained over Hamiltonian differen-
tial equations, where the dispersion function plays the role of
the Hamiltonian. The plasma response is derived in terms of the
linear theory of plasma oscillations [5], based on that for typical
experimental parameters the wave intensity is small and falls in
the linear regime.

In asymptotic methods, dispersion modelling follows the
standard approach of calculating wave trajectories using the
Appleton-Hartree (cold plasma) dispersion relation [5]. The
motivation has been the fact that, to leading order, the trajec-
tories near the cyclotron resonance are exactly those of cold
plasma theory. However, in cases of particular interest like
the perpendicular O-mode near fundamental resonance or the
X-mode near the 2nd-harmonic, the contributions of the higher
orders become very large. Recently, both experimental and
theoretical evidence is pointing to the possible importance
of hot plasma dispersion near resonance [6], [7]. Particularly
in [7], the direction of ray propagation is shown to differ
dramatically from the cold plasma trajectory. This implies
effects on the evolution of the polarization vector, especially
near resonance, and thus on the absorption of the wave. In such
cases, a full-wave treatment is called for.

The finite-difference time-domain (FDTD) method is nowa-
days recognized as a reliable tool in numerical electromag-
netism. However, for realistic ECRH simulations, the required
spatial resolution makes the computational requirements very
large, and that is why there has been little application of FDTD
to those problems up to day. Among the existing FDTD litera-
ture on hot plasma, worthy of mention are the 1D simulations
of interferometry in [8] assuming cold plasma propagation but
taking into account collisional and non-relativistic cyclotron
damping, followed by 3D simulations where the plasma re-
sponse is described in terms of the electric polarization [9].
Also of interest are the 2D simulations of reflectometry per-
formed in cold plasma with elongated magnetic geometry [10],
and the simulations of fundamental ECRH in [11] where the
plasma response is described by an “artificial” conductivity
tensor based on fluid theory.
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In this work, we present a (novel) scattered-field FDTD algo-
rithm for hot anisotropic plasma. For a constant-frequency wave
propagating in stationary plasma, FDTD can be applied directly
exploiting knowledge from the frequency domain. A numerical
application is presented in plane geometry, allowing for a sim-
pler description of the plasma-wave coupling based on the 1D
implementation of FDTD. The structure of the paper is as fol-
lows: In Section II we generalize the standard scattered-field
FDTD formulation in order to treat anisotropic materials. The
propagation and absorption in simplified geometry are studied
in Section III, under different implementations of the plasma di-
electric tensor (cold, warm, and hot weakly-relativistic) in order
to ascertain the importance of the different physics in the mod-
elling. Finally, in Section IV we summarize the conclusions.

II. SCATTERED-FIELD FDTD FORMALISM FOR ANISOTROPIC

PLASMA

In the Yee formulation [12], Maxwell’s equations are dis-
cretized and solved for the total fields. Alternatively, in a
scattered-field formalism, the total field is assumed as the super-
position of an incident and a scattered field, . The
incident field is the field that would exist in the absence of the
medium, thought of as always propagating in free space, while
the scattered field is generated by the medium in response to the
incident field. The rationale for the separate field approach is
that the incident field can be specified (or solved) analytically
throughout the problem space. This simplifies the numerical pro-
cedure, because only the scattered fields need to be absorbed at
the boundaries of the computational domain, which are truncated
with Mur’s outer-radiating boundary condition (ORBC) [13].

We are interested in applying FDTD, as a wave solver, to the
modelling of EC heating. The fusion plasma, as a medium, may
be assumed stationary and linear, however it is anisotropic due
to the axial magnetic field. Therefore, it is necessary to gen-
eralize the Yee formulation in order to treat anisotropic mate-
rials. Mathematically, this means the introduction of tensor, in-
stead of scalar, plasma response. The total-field formalism for
anisotropic medium has been derived by Schneider and Hudson
[14]. In their paper, FDTD is extended to accommodate nonzero
off-diagonal elements in the permittivity and conductivity, and
the resulting equations differ substantially from the ones of Yee.
Following this spirit, we present the scattered-field formulation
for the problem.

In anisotropic plasma, the dielectric displacement is related to
the electric field by a permittivity tensor and the current density
by a conductivity tensor

(2)

Combining the above equations with Maxwell’s equations, one
finds the curl equations for the total fields, from which it is
straightforward to obtain the equations for the scattered fields

(3a)

(3b)

The discretization of (3) follows, based on the leap-frog
scheme. For simplicity, we adopt the use of cubic cells

, however the results are easily
generalized to nonuniform grid geometries. By defining the fol-
lowing “curl” vector-matrix (sum on the values )

(4)

the discrete equations of (3a) in each direction
may be written in compact form as

(5)

For (3b) things are not so simple. The electric field cannot be
updated directly, as was done for the magnetic field, because the
off-diagonal terms of cause the temporal derivatives of the
electric field to appear on the right-hand side, and therefore the
updating equations are coupled. To formulate the time-stepping
of , these equations must be solved as an algebraic system.
The derivation of the exact expressions is rather cumbersome,
however it is a matter of straightforward calculus. We define the
tensors

(6)

This simplifies the expressions for the components of
to a compact form such like (5)

(7)

With the derivation of (5) and (7), our job on the discretiza-
tion is not completely done. Unlike the Yee equations, in (7) the
fields on the right-hand side are not “automatically” available
at the positions demanded, due to the appearance not just of the
electric field component along the axis considered but also of
the other two components. That is induced by the anisotropy of
the medium and cannot be automatically resolved by the Yee
algorithm (e.g., by changing the structure of the grid). For ex-
ample, the computation of requires

and ,
however these values are not available directly from the FDTD
grid. The electric field quantities are found at
the locations , while the mag-
netic field at ( is
the complement of Kronecker’s delta). To calculate the needed
values for , one adopts interpolating approximations in
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space among the locations of interest. As a demonstration, we
give the result for the values of

(8)

To complete the treatment, one needs to specify the plasma
response tensors. The plasma reaction to EC waves is stimu-
lated by the physics of electron motions. Therefore, in prin-
ciple, a kinetic treatment is called for. It is beyond the scope
of this work to go into the details of the calculations; for the full
derivation and explanations the reader is referred to [5]. Here,
the main steps are just sketched: (a) linearization of the kinetic
(Vlasov) equation assuming a homogeneous equilibrium plus a
small-amplitude Fourier perturbation; (b) solution for the dis-
tribution function by integrating along the unperturbed orbits
in velocity space; (c) calculation of the current density as the
1st-order moment of the distribution; and (d) determination of
the response tensors in Fourier space by fitting the result for the
current density to Ohm’s law.

It is customary to express the plasma response to electromag-
netic waves in terms of a complex dielectric tensor, which is
related to the real permittivity and conductivity tensors intro-
duced in (2) as follows:

(9)

or, inversely, and . The dimension-
less tensor is of the form

(10)

In the above, is the plasma frequency (
the electron density), is the equilibrium distribution func-
tion and the Bessel function of order and
argument . Notice the symmetry (Onsager)
relations and . The mo-
mentum space integrals are calculated according to the Landau
prescription, i.e., over the poles caused by the zeros of the de-
nominators. In order to obtain the exact expression of the dielec-
tric tensor one has to insert in (10) the Maxwellian distribution
function in the place of and perform the integrations. For the
fully-relativistic case, the evaluation of the dielectric tensor re-
quires numerical effort. To obtain analytic, more tractable ex-
pressions of the dielectric tensor, one should resort to certain
approximations.

The non-relativistic approximation amounts to setting
and using the classical-physics version of the Maxwellian. In
this case, the resonant denominator is independent of and
the integration over is carried out analytically. The validity
of this approach requires that

( is the refraction index and the
thermal velocity), which guarantee that resonant electrons
remain sub-relativistic and that the Doppler effect dominates
the relativistic frequency downshift. When these conditions
break down, as e.g., in the case of perpendicular propagation

, one should upgrade to the weakly-relativistic
approach, where a Taylor expansion in the momentum is em-
ployed in the Lorentz factor. The velocity space integration
yields for the dielectric tensor elements

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

In the above, is the inverse of the normalized
thermal energy, with the modified
Bessel function of argument , and
are the Shkarofsky functions of arguments and

[15].
At this point it is necessary to comment on some aspects.

First, from (11) one sees that a finite temperature introduces
a dependence of the dielectric tensor on the refraction index.
Therefore, apart from the case of cold plasma, the refraction
index is necessary for calculating the tensor elements. The cal-
culation of is done from the dispersion relation, which in gen-
eral form reads

(12)

where is a dual tensor based on . The dispersion rela-
tion emerges as the solvability condition for the wave equation,
which results from Maxwell’s equations when one attempts to
derive separate relations for and . In general, the disper-
sion relation appears several branches of solutions. For a certain
problem, one has to keep the solution corresponding to the spe-
cific mode of propagation.

The parameter measures the ratio of the gyroradius over the
wavelength, hence the importance of finite Larmor radius (FLR)
effects. By that, we mean effects raised by the inclusion of the
cyclotron motions in the description of the plasma response to
external fields. In the limit of very small Larmor radius, only
the simplest (zero-order) thermal correction is retained, equiv-
alent to a finite pressure term, and both approximations of the
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fully-relativistic tensor reach a form known as the warm plasma
dielectric tensor [5]

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

whereas in the limit of zero Larmor radius (no thermal motions)
reduces to the well-known cold plasma form, which may be

obtained from (13) by setting .

III. NUMERICAL APPLICATION

We present a numerical application in the perpendicular prop-
agation of an EC beam in simplified tokamak geometry (slab).
The simplicity lies in adopting , where are the
toroidal and poloidal radii. This assumption, known as the large
aspect ratio approximation, corresponds to a flat (rather than
curved) magnetic geometry with negligent poloidal field. As a
consequence, the plasma properties (magnetic field, density and
temperature) may be assumed to vary only along the -axis, in
the region , and the external magnetic field to lie just
along . The variation profiles of and are of the form

(14a)

(14b)

(14c)

These relations imply that the magnetic field increases from the
one plasma edge (low-field side) to the other
(high-field side), whereas the density and temperature rise from
the edges to the center of the plasma .

The incident field is a sinusoidal wave, launched from the
low-field side in the negative -direction

. Since the wave starts in the direction along which the
plasma is inhomogeneous, the components of the wavenumber
across remain constantly zero and the propagation stays per-
pendicular. Regarding FDTD, this allows a simpler (and numer-
ically faster) description of the wave based on the 1D implemen-
tation of the algorithm, obtained by setting
in (5) and (7). The numerical treatment sums up in the solu-
tion of the discrete FDTD equations (5), (7) for the 1D case,

with dielectric response calculated from (9) according to the
specific model, i.e., cold [(13) with ], warm [(13)] or
hot weakly-relativistic [(11)].

All these are implemented in the code ECFW, which pro-
vides the temporal and spatial evolution of the electromagnetic
field and the current density in the plasma. For the wave and
plasma parameters, we consider the experiments of ASDEX
upgrade (AUG) and the International Thermonuclear Experi-
mental Reactor (ITER). In AUG, the plasma radii are
m, m, the magnetic field on the axis is T,
the density at the plasma edge and center is
cm and cm , and the analogous values for
the temperature are KeV and KeV.
The wave frequency is GHz, corresponding to the
2nd harmonic X-mode, the wave power at injection is
MW and the beam width cm. In ITER, the same pa-
rameters have values m, m,
T, cm cm

KeV, KeV, GHz (1st harmonic
O-mode), MW and cm.

Before presenting the results, we briefly refer to issues on the
numerical implementation of FDTD. In the numerical calcula-
tion, we follow the procedure listed below.

1) Calculation of the refraction index :
a) Replace in (12) the dielectric tensor elements, as

given from the model describing the plasma response
(cold, warm, hot);

b) Solve the algebraic equation with respect to ;
c) Keep the solution referring to the specific mode of

propagation;
2) Calculate the elements of the permittivity and conductivity

tensors ;
3) Calculate the elements of the tensors , based on (6);
4) Use these values in order to calculate the electric field

through the update equations.
The grid size is taken equal to 1% of the wavelength in

vacuum, whereas the time step is set to 10% of the stepsize
emerging from the Courant stability condition. The stepsizes
were given relatively low values with respect to common
practice (see, e.g., [16]) because the conductivity in the plasma
attains large values, especially near resonance, and therefore
the accuracy and stability in the calculations fail for stepsizes
relative to usual media. The total integration time is a multiple
of the time needed by the wave to cover the poloidal diameter.
Since the wave frequency and the dielectric tensor do not
depend on time, the calculated fields are expected to reach a
steady state. Whether the specified integration time is large
enough so that the complete picture is included in the results,
is checked by following the temporal evolution of the fields at
specific grid points.

In Fig. 1 we show FDTD simulations of cold plasma propa-
gation in AUG. The temporal evolution of the electric field com-
ponent at the checkpoint is plotted in Fig. 1(a).
The field is zero up to s, the time needed for the wave
to arrive at the checkpoint, and indeed reaches a steady-state
after s (which correspond to a few more than 3000
wave periods). Since is the longitudinal component gener-
ated by the plasma, it attains values more than 10 times smaller
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Fig. 1. FDTD simulation of cold plasma for AUG parameters: (a) Time evolu-
tion of � (with a zoom near � � ��� � �� s) at � � ����� , (b) steady-state
spatial profile of �.

from the amplitude. The fields vary periodically in time, which
is not clearly distinguishable before a magnification in Fig. 1(a)
(top-right subfigure). In Fig. 1(b) we give the steady-state profile
of variation (with respect to ) of the electric field amplitude .
The electric field remains constant along the poloidal, so there
is no wave damping in the plasma. This is actually what “cold
plasma” means: in the absence of collisions and thermal mo-
tions from the modelling, there is no mechanism to absorb the
wave energy.

For propagation under the warm plasma model for AUG
parameters, in Fig. 2 the spatial profile of is compared to
the same profile in cold plasma [Fig. 1(b)]. It is clear that the
plasma response under the cold and warm plasma models is
almost identical. This is because the only difference between
the cold and warm plasma dielectric tensors is a finite pressure
term coming from the lowest-order thermal correction, which
however does not describe the collisionless damping owed to
resonant electrons. Considering again the case of cold plasma,
without collisions into play both the cold and warm plasma
tensors are Hermitian and, consequently, contain no wave
dissipation. For modelling collisionless absorption, the detailed
treatment provided by kinetic theory is necessary.

We studied the case of hot, weakly-relativistic plasma for both
AUG and ITER, and the results are presented in Figs. 3 and 4.

Fig. 2. FDTD simulation of warm plasma for AUG parameters: Steady-state
spatial profile of � (in comparison with the cold-plasma profile of Fig. 1).

Whereas the present case is directly connected with ECRH, also
the above cases are indirectly related since many algorithms
model ECRH as the combination of cold plasma propagation
with a hot plasma absorption coefficient, assuming that kinetic
effects appear only in the amplitude and not in the polarization
of the wave (see, e.g., [17] and [18]). For AUG, in Fig. 3 the spa-
tial profiles of are presented. The absorption of the wave
occurs in the narrow resonance layer near the plasma center. The
damping profile is very steep, indicating large values of the con-
ductivity tensor within the resonance layer. The current density
increases slowly towards the resonance layer, becomes much
larger due to the resonant interaction and then it is nullified past
the resonance, since the electric field of the wave has been com-
pletely damped.

In Fig. 4 we give the profiles of and for parameters rele-
vant to ITER. In this case, due to the specific value of the mag-
netic field on the axis, the resonance layer is shifted towards the
high-field side. From Fig. 4(b) it is seen that the current in the
plasma is very localized, practically only inside the resonance
layer. Contrary to the hot plasma X-mode [see Fig. 3(b)], the
polarization of the O-mode is such that current cannot be gen-
erated before the wave reaches the resonance.

As an outcome, a benchmarking of our method is essential.
This can be done in terms of asymptotic techniques, the re-
sults of which can be directly compared to our numerical re-
sults. For the specific benchmark we utilize the beam tracing
method. The numerical implementation is done by the code
NGBT, which solves the beam tracing equations in plane geom-
etry for arbitrary beam shape [19]. Unlike ECFW, which models
the plasma response in terms of the fully kinetic tensor, NGBT
follows the mainstream of codes based on asymptotic methods
and considers cold plasma propagation, with kinetic effects re-
flected only in the reduction of the amplitude according to the
hot plasma optical depth.

In Fig. 5 the results of ECFW are compared to NGBT for
the same parameters as the ones in Fig. 3. One can see that,
despite the difference in the physics modelling, the agreement
between the results of the two codes is very good. This happens
because, in the plain slab model, absorption is described entirely
by the anti-Hermitian part of the dielectric tensor. Consequently,
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Fig. 3. FDTD simulation of hot, weakly-relativistic plasma for parameters rel-
evant to ECRH in AUG: Steady-state spatial profiles of (a) � and (b) � .

the power deposition as a function of becomes completely
independent of details of the beam trajectory. In particular, the
optical depth of the plasma slab is not changed by the effects of
kinetic dispersion on beam propagation (see [7] for details).

IV. CONCLUSION-DISCUSSION

We present a full-wave model of EC propagation in hot
anisotropic plasma, based on the FDTD method. For this type
of problem, frequency-domain asymptotic methods are most
popular, because of the ability to derive analytic expressions,
in some cases even exact, for the plasma response. For a
constant-frequency wave propagating in stationary plasma
(the most common approach to ECRH), FDTD can be applied
directly using the dielectric response of the plasma as derived
in the frequency domain. The scattered-field formulation for
anisotropic plasma is derived in compact form, as a contin-
uation of [14]. A numerical application is presented in slab
geometry, allowing a simpler description of the plasma-wave
coupling, based on the 1D implementation of FDTD. The code
ECFW studies the phenomena under different physics models
for the dielectric plasma response.

The main numerical results are summarized as follows: In all
cases, the fields reach a steady-state after a characteristic time,
as expected due to the lack of time dependence in the plasma

Fig. 4. FDTD simulation of hot weakly-relativistic plasma for ITER parame-
ters: Steady-state spatial profiles of (a) � and (b) � .

Fig. 5. Comparison of the full-wave solution (ECFW) and the beam-tracing
asymptotic solution (NGBT) for AUG parameters.

response. For cold/warm plasma, the electric field amplitude re-
mains constant along propagation, because these models do not
include the effect of cyclotron absorption. In hot plasma, the ab-
sorption of the wave is found to occur in a very narrow region,
known as the resonance layer, which is defined by the wave fre-
quency and the magnetic field profile. In specific, the position
of the resonance layer on the -axis is controllable, i.e., it can
be shifted towards the low- or the high-field side, by changing
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either the wave frequency or the magnetic field on the axis. The
generated current is also very localized, practically only inside
the resonance layer. Benchmarking of ECFW with a code based
on the beam tracing asymptotic method proved successful.

A discussion on the limitations of our model is necessary.
First, in the 1D description it is not possible to model 2D
propagation and associated effects, like, e.g., mode conversion,
ECCD, as well as effects having to do with the variation of the
electric field profile (focusing, diffraction). These issues can be
studied only under a 2D/3D implementation of FDTD, which
is the subject of future work. Another limitation is that the
dielectric response of the plasma considered here is in terms of
linear theory. Hence, the description of nonlinear wave-particle
interaction is missing. In this direction, an immediate extension
of our work is to calculate the current density based on particles
moving on the grid. The particle orbits may be calculated
by following the discretized equations of motion or by other
available methods.
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